Oceaner i det ydre Solsystem

Det berømte billede “Earthrise” taget fra Apollo 8 i kredsløb om Månen er et ikon fra den tidlige rumalder. Det viser Jorden som en blå juvel mens den står op over Månens horisont.

NASA-Apollo8-Dec24-Earthrise

 

Som en sidebemærkning, så står Jorden kun op over horisonten, fordi Apollo 8 var en rumsonde i kredsløb om Månen. Månen vender altid samme side mod Jorden så hvis man står på Månens overflade står Jorden hverken op eller går ned. Den står bare på himlen (eller, hvis man er på Månens bagside, så er Jorden aldrig synlig).

Jordens blå farve skyldes naturligvis verdenshavene som er et af de mest umiddelbart unikke træk ved Jorden i sammenligning med andre planeter. Det ser imidlertid mere og mere ud til at det faktisk ikke er sandt at Jorden er det eneste legeme i Solsystemet med et hav.

Vand, altså molekylet H2O, er ganske almindeligt i universet. Brint (H) er det mest almindelige grundstof, ilt (O) er nummer 3, og vand er en af de allermest almindelige molekylforbindelser. Det findes på gasform i molekylærskyer i Mælkevejen og i stjerners atmosfærer og det findes som is i store mængder i det ydre Solsystem. Kometer består for en stor dels vedkommende af is, is er en betydelig bestanddel af Saturns ringe og mange af månerne i det ydre solsystem  er meget rige på is.

Det, der ikke er så almindeligt, er at finde vand på flydende form.

Jupiters måne Europa er omtrent på størrelse med vores egen måne og har en overflade, der i det væsentlige består af is. Her ses Europa med Jupiter bagved på et spektakulært foto fra Galileo-rumsonden:

Jupiter-Europa

Jupiter er 5 gange så langt fra Solen, som Jorden, og ude ved Jupiter er solindfaldet 25 gange mindre end her, så der er uhyre koldt. Overfladetemperaturen på Europa er gennemsnitligt omkring -160oC. Ikke desto mindre er det almindeligt antaget at der findes et hav under isen på Europa.

Europas overflade er ung (få meteorkratere) og gennemskåret på kryds og tværs af et komplekst net af sprækker, som giver indtryk af bevægelse i lagene under overfladen. Visse steder, i såkaldt “kaotisk” terræn, ser overfladen ud til at være brudt op og isflager har bevæget sig og roteret før de er frosset fast igen.

Europa har også et svagt magnetisk felt induceret af Jupiters kraftige magnetfelt. Det vil sige at Europas magnetfelt reagerer på ændringer i magnetfeltet fra Jupiter ligesom en elektrisk ledende kugle ville reagere. Is er ikke nogen god elektrisk leder, men vand er (hvis bare der en smule salt/urenheder i det). Så det er yderligere indikation af, at der findes et lag af vand under overfladen.

Hvordan kan det lade sig gøre ? Hvor kommer varmen fra, når temperaturen er -160oC ved overfladen ?

Europa fastholdes af tyngdekraften fra de andre Jupitermåner, specielt Io, i en bane, der er en lille smule elliptisk, således at Europa i løbet af sit kredsløb ændrer afstanden til Jupiter en smule, frem og tilbage. Tyngdekraften fra Jupiter er massiv, så når Europa ændrer afstand til Jupiter deformeres den en smule fordi tyngdekraften er kraftigere på den side , der vender mod Jupiter. Det er samme fænomen, som skaber tidevandet på Jorden, men meget kraftigere. Og den konstante deformering af Europa, frem og tilbage, afsætter nok friktionsvarme til at smelte isen nede under overfladen. Havet under isen på Europa estimeres til at indeholde mere vand end alle Jordens oceaner.

Nu bevæger vi os så endnu længere ud: Ud til Saturn, hvis lille måne Enceladus gemte på en genuint chokerende overraskelse, opdaget af  Cassini-rumsonden første gang i 2005.  Enceladus er kun omkring 500 km i diameter og overfladen består, ligesom Europas af is.

Enceladus_Plumes

Det der flimmer, som ses nede ved sydpolen af Enceladus, er gigantiske gejsere af vand og damp, der sprøjter direkte ud i rummet og kondenserer til iskrystaller.

Enceladus_geysers

En nylig offentliggjort analyse bekræfter eksistensen af et hav under isen på Enceladus’ sydpol. Her har man set på tyngdekraft-påvirkningen fra Enceladus på Cassini rumsonden når den fløj forbi. Ved at analysere små variationer i frekvensen af radiosignalet fra sonden (Doppler-forskydning) kan man kortlægge de små ændringer af rumsondens hastighed (< 1 mm/s) som skyldes variationer i tætheden af materialet inde i Enceladus.

Analysen viser et område under sydpolen på Enceladus hvor tætheden er højere end det øvrige materiale (vand er tungere end is !). Dette hav på Enceladus opvarmes af en lignende proces, som opvarmer Europa, omend de nuværende modeller har svært ved at forklare at opvarmningen af Enceladus er kraftig nok til at holde et hav smeltet. Havet på Enceladus estimeres til at have et rumfang ca. det halve af Østersøen,

Endelig, og som finalen, så viste data fra Hubble-rumteleskopet i slutningen af sidste år vand, som undslap fra Europa. Sandsynligvis ved en proces, som ligner vandsøjlerne fra Enceladus.

Så: Jorden, den blå planet, er ikke det eneste sted i Solsystemet med et hav. Flere af gasplaneternes ismåner opvarmes tilstrækkeligt af tidevandets kræfter til at oceaner kan eksistere under overfladen – og når disse måner deformeres af tidevandskræfterne kan der dannes sprækker i isen som går helt ned til oceanet nedenunder (under kilometervis af is).

Når vandet kommer i direkte kontakt med det tomme rum ovenover spilkoger det eksplosivt og står som kilometerhøje søjler  ud i rummet. Søjler af damp, der siden igen kondenserer til fine iskrystaller.

Naturen er i sandhed forunderlig !