Kategoriarkiv: Astronomi

Indlæg om astronomi.

Kollisioner kan resultere i udryddelse af alt liv på jorden

Gæsteindlæg: ScienceBlog blev for nylig kontaktet af Louise Refslund, der går i 2.g. på Kruses Gymnasium. Hun var i gang med at skrive en studieretningsopgave (SRO) om astronomi, og opgaven skulle gerne munde ud i et naturvidenskabeligt blogindlæg. Det synes vi da er en fremragende opgaveform, så vi tilbød straks at publicere Louises indlæg!

Læs videre Kollisioner kan resultere i udryddelse af alt liv på jorden

Stævnemøde i det ydre solsystem nytårsmorgen

2019 starter med mere end fyrværkeri og skihop – klokken 06:33 nytårsmorgen dansk tid er der stævnemøde i den yderste ende af solsystemet – seks milliarder kilometer fra Jorden. Hvis champagne-rusen har lagt sig, kan du overvære den sidste gang i adskillige år, at et hidtil ukendt himmellegeme i det ydre solsystem åbenbarer sig for os. 

Det er NASAs rumsonde New Horizons, som nytårsmorgen suser
forbi “asteroiden” Ultima Thule med en hastighed på 14,6 kilometer i sekundet (52.650 kilometer i timen) og en afstand på 3.500 kilometer.

En illustration af, hvordan Ultima Thule måske ser ud.  Illustration: Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)

(Jeg skriver asteroide, for NASA bruger en ret intetsigende betegnelse for himmellegemer i den del af solsystemet – Kuiper Belt Object (KBO). I forvejen har forskerne vanskeligheder med at finde de rigtige betegnelser til himmellegemerne Kuiper-Bæltet. Spørg blot en tilfældig NASA-forsker, om han eller hun mener; er Pluto en planet eller en dværgplanet.)

New Horizons kommer dermed tættere på Ultima Thule end på Pluto, som rumsonden suste forbi i 2015. Ultima Thule er også noget mindre – blot 25 kilometer i diameter mod Plutos 2377 – og hvis Plutos sammensætning er karakteristisk for KBOerne, så er Ultima Thule en snebold af frossen kvælstof. 

Billedet er en serie af billeder af Ultima Thule. Holdet bag New Horizons har længe holdt øje med, om der er støv eller ringe i området. Når en rumsonde flyver med 14,6 kilometer i sekundet, kan selv det mindst støvkorn forvolde ekstrem skade. Den gul-grønne plet i midten er Ultima Thule og de to stiblede linjer uden om, repræsenterer de to afstande New Horizons kunne vælge at flyve forbi Ultima Thule med. Fordi NASA-forskerne ikke har fundet tegn på støv eller ringe, har de valgt den inderste af de to muligheder – markeret med et X.
Foto:  NASA/Johns Hopkins Applied Physics Laboratory/Southwest Research Institute.

Rumsonden vil forsøge at kortlægge overfladen og afgøre, hvad Ultima Thule helt præcist består af. Samtidig vil New Horizons’ kameraer spejde efter naturlige satellitter og ringe, som dem Saturn har.

Fra 3.500 kilometers afstand vil kameraene være i stand til at tage billeder, hvor hver pixel svarer til 35 meter. Billederne kan imidlertid blive lidt slørede af, at rumsonden flyver så hurtigt, samt at der så langt ude i solsystemet ikke er særlig meget sollys at tage billeder i.  

Infografik, NASA.

Forskerne bag New Horizons-missionen brugte Hubble-teleskopet til at lede efter KBOer hinsides Pluto, og det var sådan, de fandt Ultima Thule i 2014.

Navnet betyder “Et fjernt ukendt område; Opdagelsens ekstreme grænse” på latin.

De første billeder bliver offentliggjort i dagene frem til den 4. januar. Men fordi New Horizons er så langt væk fra Jorden, kan rumsonden kun sende sine data tilbage med 1000 bit i sekundet. Det betyder, at det vil tage 20 måneder – helt frem til udgangen af 2020 – før al data fra Ultima Thule er tilbage på Jorden.

Følg med i missionen den 1. januar klokken 06:33 på NASA TV

Læs mere her:  http://pluto.jhuapl.edu/

Og endnu mere her: http://www.planetary.org/blogs/emily-lakdawalla/2018/what-to-expect-new-horizons-mu69-ultima-thule.html

Den interstellare asteroide ‘Oumuamua

I slutningen af efteråret sidste år opdagede astronomer for første gang nogensinde et objekt – en asteroide – i vores solsystem, som stammer fra et fremmed solsystem. Opdagelsen blev kortvarigt omtalt både i dansk og international presse

Nyheden er selvfølgelig ikke helt så ny længere, til gengæld er der nu (lige før nytår) kommet en officiel artikel i Nature, og jeg tænkte det måske kunne være et godt tidspunkt at samle lidt op på, hvad det egentlig var, der blev opdaget, hvad vi ved med sikkerhed, hvad der er mere spekulativt, og hvad opdagelsen kommer til at betyde fremover.

Læs videre Den interstellare asteroide ‘Oumuamua

Visuel guide til jagten på nordlyset

Gæsteindlæg: Dette gæsteindlæg er tilsendt os fra Expedia Danmark, som drives af Expedia Inc., et af verdens største online rejsebureauer. Vi har givet Expedia lov til at præsentere en af deres seneste kampagner, idet den er baseret på formidlingen af viden om nordlys, og på Scienceblog mener vi, at alle mennesker bør opleve fænomenet mindst én gang i livet.

 

Jagten på nordlyset er de seneste år blevet en turistattraktion uden lige, og nordlys-turismen boomer. Såvel har Norge, Sverige, Island og Finland alle oplevet antal af besøgende, der kommer til for at opleve den dansende, fluorescerende nattehimmel med egne øjne. I Finland kan du endda arbejde som “nordlys-spotter”. Ja, du hørte rigtigt. Hotel Arctic Snow Hotel har ansat en ‘spotter’, så ingen af hotellets gæster sover fra den unikke oplevelse.

Men hvad er dette fantastiske naturfænomen egentlig? Og hvor kan du selv opleve det? Svarene har vi undersøgt og samlet i denne simple, visuelle guide:

 

I Danmark skal man være heldig for at se nordlys. Ikke desto mindre, jo længere nord på du er, jo større er sandsynligheden.

Du finder selve kampagnesiden her: Jagten på Nordlyset.

Stephen Hawking i København

24. august fik jeg en helt usædvanlig fødselsdagsgave, nemlig muligheden for at opleve et foredrag med den verdenskendte Engelske teoretiske astrofysiker Stephen Hawking. Stephen Hawking besøgte Danmark i.f.m. en konference i Videnskabernes Selskab. Med rettidig omhu var det lykkedes Carlsberg fondet at få Stephen Hawking engageret til et offentlig foredrag i DRs koncertsal.

Foredragets titel var “Quantum Black holes” – Kvantesortehuller. På forbløffende 18 minutter var foredraget udsolgt, så for at imødekomme denne overvældende interesse for foredraget blev der også transmitteret direkte til 27 biografer landet over. Det må være den største videnskabsformidlingsbegivenhed i Danmark i årtier.

I DR koncertsalen var tilhørene blevet instrueret i at komme i god tid. Tilmed var foredraget en smule forsinket, så der opbyggede sig en intens stemning af forventning. Efter en åbningstale fra Professor Flemming Besenbacher, som er formand for Carlsbergfondet, kom Stephen Hawking ind på scenen sammen med en assistent til stor applaus fra publikum.

Stephen Hawkings foredrag bestod af række foredrags-slides med tilhørende forindtalt tale fra Stephen Hawking. Jeg tror han skiftede fra den ene slide til den næste v.h.a. en muskel i ansigtet. I øvrigt var han der bare – som en mærkelige tilstedeværelse. For mig var foredraget et stor oplevelse af to grunde. Først og fremmest synes jeg fysikken er dybt interessant.

Stephen Hawking forklarede hvad sorte huller er: områder med så intense tyngdefelter, at der findes en mindste afstand hvorfra intet kan slippe bort. Alt der kommer indenfor denne grænse, kaldet Schwarzschild-radius, er uafvendeligt fanget og kan ikke slippe bort. Dette gælder også for lys. Stephen Hawking sammenlignede med en kajak-roer på vej mod Niagaravandfaldene: så længe man er over faldet kan man undgå at falde ned, men er man først kommet ud over kanten, så er der ingen vej tilbage. Han fortalte også om tidligere vigtige bidragere til studiet af sorte huller, f.eks. John Wheeler og Roger Penrose. Dernæst kom han ind på det fænomen han er mest kendt for: Hawkingstråling. Sorte huller er ikke uforanderlige kosmiske gravstene for kosmiske katastrofer, men derimod forgængelige objekter. P.g.a. en for store sorte huller som dem vi kender uhyre langsom udsendelse af stråling vil de langsomt fordampe. Hawking udviklede også tanken om hele Universet som en dannelsen af et sort hul spillet baglæns i tid. Jeg gad vide om begrebet Hawkingstråling også er relevant for Universet som helhed?

Endelige omtalte han den problemstilling, der har optaget ham senest nemlig det såkaldte informationsparakdoks og det væddemål han har indgået i den forbindelse: hvis sorte huller kan fordampe, hvad sker der så med den information, der var indeholdt i det materiale, der forsvandt ind i det sorte hul?

Jeg vil ikke rode mig dybere ud i denne problemstilling, men istedet henvise til Suskinds bog: The Black Hole War. Jeg tror ikke den endelig løsning på disse problemer er fundet og deri ligger det mest interessante: dette er et fundamentalt problem og i fysikken er problemer en gave fra himlen. De er nemlig det første og vigtigste skridt på vejen mod nye indsigter.

Den anden grund til, at foredraget var en stor oplevelse er mennesket Stephen Hawking. Der er noget essentielt menneskeligt over ham som han sidder der i sin kørestol. Hans foredrag rummede stor humor og varme – og det er gribende at opleve, hvordan Hawking kan nå ud til sit publikum med denne varme og humor trods hans handicap.

For mig er mennesket, og vores sære bevidsthed og dens stræben efter forståelse, lige så interessant som de sorte huller som denne særlige bevidsthed, Stephen Hawking, fortalte os om 24. august 2016.

Efter foredraget blev Stephen Hawking mødt med et langvarigt stående applaus. Der var kærlighed i luften. Det hele blev afsluttet med gode øl fra Jacobsen bryg.

Jordlignende planet i bane om Solens nærmeste nabo: Proxima Centauri

I går blev det sensationelt annonceret at der findes en Jordlignende planet i bane om Solens allernærmeste nabostjerne – Proxima Centauri. Artiklen bag blev i dag offentliggjort i Nature.

“Jordlignende” planeter er planeter med en masse i nærheden af Jordens og placeret i den “beboelige zone” – det vil sige i en afstand fra deres stjerne som tillader flydende vand på overfladen. Jordlignende planeter har længe været den hellige gral i exoplanetforskningen og blandt de tusindvis af opdagede exoplaneter kan de jordlignende stadig tælles på to hænder.

Derfor er det da også en genuin sensation at man nu har opdaget en sådan planet i bane om den allernærmeste stjerne.

Proxima Centauri er formentlig en del af et trippel-stjernesystem med dobbeltstjernen Alfa Centauri. Systemet består af to stjerner på størrelse med Solen, Alfa Centauri A og Alfa Centauri B og så af Proxima Centauri der er en rød dværgstjerne med en masse på 12% af Solens.

Alfa Centauri A og B er i bane om hinanden med en indbyrdes afstand som varierer mellem afstanden Solen-Saturn og afstanden Solen-Pluto og en omløbstid omkring 80 år. De er så tæt på hinanden at de ikke kan skelnes fra hinanden med det blotte øje og de ses på den sydlige halvkugle som et enkelt objekt – Alfa Centauri, der er den tredjeklareste stjerne på himlen.

Proxima Centauri cirkler så om den centrale dobbeltstjerne i en afstand på omkring 15.000 astronomiske enheder eller 0.2 lysår og med en omløbstid på mere end 500.000 år. Faktisk ved vi ikke med sikkerhed om Proxima er i bane om den centrale dobbeltstjerne eller om den bare tilfældigvis er så tæt på. Under alle omstændigheder er den omkring 4.25 lysår fra Solen.

Herunder ses en figur der sammenligner størrelserne af Alfa Centauri A og B med Proxima Centauri, Solen og Jupiter:

 

The relative sizes of a number of objects, including the three (known) members of Alpha Centauri triple system and some other stars for which the angular sizes have also been measured with the Very Large Telescope Interferometer (VLTI) at the ESO Paranal Observatory. The Sun and planet Jupiter are also shown for comparison.

(Kilde: European Southern Observatory)

Læg mærke til hvor lille Proxima Centauri er:  Selvom den vejer mere end 10% af Solens masse fylder den ikke meget mere end Jupiter, som vejer mindre end 0.1% af Solen.  Proxima Centauri har uhyre høj massefylde.

En stjernes lysudsendelse vokser meget kraftigt med stjernens masse. Det betyder at selvom Proxima Centauri vejer 12 % af Solen  så udsender den kun omkring 0.17% af det lys som Solen udsender.  Og værre endnu (for mennesker) så er den kun omkring 3000 grader varm  og sender derfor langt det meste af sit lys ud som infrarødt lys hvorimod Solen ved ca. 6000 grader sender det meste af lyset ud i det synlige område. I det synlige område lyser Proxima Centauri derfor kun med 0.005 % af Solens lys og er for lyssvag til at kunne ses med det blotte øje.

Planeten, Proxima Centauri b er fundet ved den såkaldte radialhastighedsmetode hvor planeten opdages indirekte ved dens indflydelse på stjernens bevægelse. Man kan se på lyset fra stjernen at det forskydes en lille smule mod kortere bølgelængder (blåforskydes) når stjernen nærmer sig Jorden og omvendt forskydes mod længere bølgelængder (rødforskydes) når stjernen fjerner sig fra Jorden. I det planeten roterer om stjernen bevæger stjernen sig også og denne bevægelse kan ses.

På figuren herunder ses radialhastighederne for Proxima Centauri over en periode på 3 måneder i begyndelsen af 2016. Den blå kurve viser et matematisk fit svarende til den ideelle effekt af planeten. Stjernen bevæger sig frem og tilbage med hastigheder på omkring 5 km/t og en periode på præcis 11.2 døgn.

This plot shows how the motion of Proxima Centauri towards and away from Earth is changing with time over the first half of 2016. Sometimes Proxima Centauri is approaching Earth at about 5 kilometres per hour — normal human walking pace — and at times receding at the same speed. This regular pattern of changing radial velocities repeats with a period of 11.2 days. Careful analysis of the resulting tiny Doppler shifts showed that they indicated the presence of a planet with a mass at least 1.3 times that of the Earth, orbiting about 7 million kilometres from Proxima Centauri — only 5% of the Earth-Sun distance.

(Kilde: European Southern Observatory)

Som det ses er der en del usikkerhed på målingerne men en grundig statistisk analyse viser at målingerne dårligt kan forklares som tilfældig variation og den skulle være god nok. Der er en planet.

Fordi vi ikke ved hvordan planetens baneplan er orienteret i forhold til synsretningen er der en usikkerhed i bestemmelsen af planetens masse. Vi kan kun sige at den vejer mindst 1.3 gange Jorden og med 90 % sandsynlighed vejer mindre end 3 gange Jordens masse. Den roterer som sagt om sin stjerne med en periode (et “år”) på 11.2 døgn og i en afstand på kun 1/20 af Jordens afstand til Solen.

Forholdene på planeten Proxima Centauri b er sandsynligvis – selvom den er Jordlignende – temmelig anderledes end på Jorden. Vi kender ikke planetens rumfang og derfor heller ikke dens massefylde eller tyngdekraften ved overfladen – men den er nok ikke alt for langt væk fra tyngdekraften på Jorden. Vi ved ikke om planeten har en atmosfære og hvis ja, hvad dens beskaffenhed er. Vi ved ikke om der rent faktisk er flydende vand, have eller søer, selvom temperaturen tillader det og vi kender ikke dens omdrejningsperiode. Det er dog forholdsvist sandsynligt at den er “låst” til sin stjerne og altid vender samme side mod stjernen lige som Månen mod Jorden. Dette skyldes kraftige tidevandskræfter fordi stjernen er så tæt på og vil muligvis – muligvis ikke – gøre muligheden for liv mindre.

Set fra planeten vil stjernen Proxima Centauri være en gigantisk, men  forholdsvist lyssvag, rød skive. Et spektakulært syn, uden tvivl.

An angular size comparison of how Proxima will appear in the sky seen from Proxima b, compared to how the Sun appears in our sky on Earth. Proxima is much smaller than the Sun, but Proxima b lies very close to its star.

(Kilde: European Southern Observatory)

Jeg er slet ikke i tvivl om at dette her er en virkelig, virkelig stor nyhed. Denne planet er tæt nok på os til at den formentlig vil kunne ses direkte med næste generation af mega-teleskoper som allerede er under konstruktion og vi vil for første gang kunne se hvordan en af Jordens søstre eller brødre ser ud.

 

 

Det søde liv: Livets kirale sukker

Søren Vrønning HoffmannGæsteindlæg: Søren Vrønning Hoffmann er seniorforsker ved Institut for Fysik og Astronomi, Aarhus Universitet. Her er han leder af beamline gruppen ved synkrotronstrålingskilden ASTRID2. Han har en stor forskningsinteresse inden for polarisationsafhængig absorptions-spektroskopi i det ultraviolette område, en metode der er særligt velegnet til undersøgelse af kirale systemer. Her præsenteres helt ny forskning, der er publiceret i det ansete tidsskrift Science.

 

Hvad er liv?
Et helt centralt spørgsmål som virker overraskende svært at svare på. Prøv at kikke dig omkring, og du vil slet ikke være i tvivl om, hvilke ting omkring dig er levende og hvad, der ikke er. Alligevel er en klar definition ikke så nem at lave.

Men det liv, vi kender her på jorden, er kendetegnet ved at være opbygget via genetisk kode i form af DNA. Dette indeholder alle informationerne til at danne et utal af proteiner, som får ting til at ske. Det kan f.eks. være som signalstoffer eller som katalysatorer, der driver livets kemi. En meget central egenskab ved denne kemi er det, som vi kalder kiralitet.

https://en.wikipedia.org/wiki/Chirality#/media/File:Chirality_with_hands.svg

Byggestenene i livets kemi er aminosyrer og de såkaldte nukleotider, der indgår i hhv. proteiner og vores DNA. En helt central egenskab i disse byggesten er det, som vi kalder kiralitet, eller håndethed, altså at f.eks. aminosyrer findes i to udgaver, som ligner hinanden, men er forskellige på samme måde som vores hænder: Venstre hånd er et spejlbillede af den højre hånd.

Specielt er det, at kun venstrehåndsformen bruges i aminosyrer og kun højrehåndsformen indgår i sukkerenheden i RNA og DNA.

Her vil det være helt på sin plads at spørge om hvorfor og hvordan.

 

Hvorfor?
’Hvorfor’ har vi faktisk et svar på. Selv om almindelige kemiske reaktioner, der danner kirale molekyler, normalt danner lige mange venstrehånds og højrehånds former, så er valget af én kiralitet, kaldet homokiralitet, meget vigtig. En altafgørende egenskab ved DNAs dobbeltspiral er, at den kan replikeres således, at vores arvemateriale kan kopieres ved en celledeling. Og det kan kun lade sig gøre, hvis alle nukleotiderne i DNA’et har samme kiralitet.

Overalt på jorden bruges kun højrehåndsformen af sukkergruppen i DNA og RNA. Så for at livet kan formere sig, har vi brug for homokiralitet. Man kan en lille smule filosofisk sige, at vi ikke ville være her til at stille det spørgsmål, hvis det ikke var lykkes at udvikle livet ud fra en enkelt kiralitet.

https://en.wikipedia.org/wiki/DNA_replication#/media/File:DNA_replication_split.svg

 

Hvordan?
Svaret på hvordan lige netop højrehåndskiralitet i DNA og venstrehåndskiraliteten i aminosyrer, har udviklet sig her på jorden, er til trods for flere årtiers forskning stadigvæk ubesvaret og noget af et stort mysterium.

Der findes flere teorier og ideer til, hvordan den ene håndethed har sejret i livets udvikling. F.eks. kunne det være sket vha. tilfældighed: Måske har det været to vandpytter indeholdende hver deres livets ur-suppe, som har udviklet begyndelsen til liv med hver sin håndethed. Den ene kunne have ligget i skygge under et klippefremspring, mens den anden har haft bedre sollys og varme.

Ud fra en Darwinistisk synsvinkel ville den ene have haft bedre mulighed for at udvikle sig, og det blev den der vandt kampen om at overleve.

Men det er bestemt også en mulighed, at en mere deterministisk effekt har haft indflydelse på valget af livets kiralitet. Og her læner vi os specielt op af vigtige fund af ekstraterrestisk karakter.

Det er interessant, at både aminosyrer og nukleotider er fundet i meteoritter som f.eks. Murchison meteoritten, der faldt i Australien for mere end 45 år siden, og at aminosyrerne her findes med en overvægt af venstrehåndtypen. Nøjagtigt samme kiralitet som bruges i livet på jorden! Kan det derfor være, at livets kemi er blevet sat i gang via molekyler med oprindelse uden for jordens atmosfære?

Murchison meteoritten - https://commons.wikimedia.org/wiki/File:Murchison_crop.jpg
Murchison meteoritten

 

Det er i hvert fald en utroligt fascinerende tanke med vidtrækkende konsekvenser, og det er ualmindeligt svært at afskrive dette sammenfald af ens kiralitet i himmellegemer og jordens liv som en tilfældighed.

 

Hvad kan forårsage universel kiralitet?
Vi skal altså lede efter mere deterministiske kræfter. Her er den svage kernekraft en undersøgt mulighed. Denne fundamentale kraft har den egenskab, at den ikke overholder såkaldt paritetssymmetri. Denne symmetri svarer til en refleksion (efterfuldt af en rotation), og kirale molekyler har netop ikke refleksionssymmetri. Det kan derfor betyde, at der dannes en meget lille overvægt at molekyler med en form for kiralitet.

En meget meget lille forskel. Selv om universet er mange milliarder år gammel, så er forskellen ikke stor nok til at forklare overvægten af venstrehånds aminosyrer i meteoritter.

I vores søgen efter en deterministisk effekt hælder vi mere mod ultraviolet lys. Dette er energirigt nok til at bryde bindinger og starte kemiske reaktioner. Ultraviolet lys kan skabe mere komplekse forbindelser ud fra simplere molekyler som vand, CO, CO2 eller ammoniak, alle molekyler som vi ved findes i rigt mål som en is omkring interstellare/interplanetariske støvpartikler, og dermed også på f.eks. kometer.

Men kan molekyler af samme kompleksitet, som de der indgår i livets kemi, dannes på denne måde?

 

Livets byggesten på en  komet
Rosetta missionens Philae landing på kometen 67P/C-G i november 2014 havde bl.a. til formål at finde livets byggesten på et ellers livsfjendtligt himmellegeme. Kort efter landing fik vores indre del af solsystemet, i januar 2015, besøg af en anden komet, Lovejoy. Her blev gasserne fra kometen også analyseret.

I begge tilfælde blev sukkerarten glykolaldehyd detekteret på/ved disse kometer. Vi har altså fundet et relativt komplekst molekyle i stor nok koncentration til, at det kunne blive detekteret her fra jorden.

Fundet vakte opsigt, til trods for at denne sukkerart er så simpel, at den af nogle kemikere ikke engang bliver betragtet som sukker. Opsigten skyldes, at denne sukkerart er en vigtig del af de kemiske processer, som danner en lang række andre sukkerarter.

Men kan forekomsten af glykolaldehyd forklares vha. fotokemiske reaktioner med ultraviolet lys?

 

Kunstig komet i laboratoriet
For at teste dette lavede vi en laboratorie ’komet’. I vores undersøgelse (Science 2016, 352, p208) startede vi med en blanding af vand og metanol samt en smule ammoniak, alle molekyler som findes på kometer. Blandingen blev frosset ned til meget lave temperatuer (ca. -195oC) under belysning med ultraviolet lys.

Vi efterprøvede altså, hvad et støvkorn eller en komet ville opleve i nærheden af solen eller andre stjerner. Vi fandt, at ikke blot blev den simple sukkerart glykolaldeyd, som observeret på kometerne 67P og Lovejoy, fundet i den simulerede komet, men også langt mere komplekse sukkerater blev dannet.

Og særligt begejstrede blev vi over fundet af ribose, der er den centrale, og kirale, sukkerenhed i RNA. Ribose sætter R’et i RNA, og dets søstermolekyle (deoxy-ribose) sætter D’et i DNA. Tilsammen udgjorde alle de fundne sukkerarter 3.5 % af de dannede stoffer, så det var ikke bare en smule sukker, der blev dannet, men en ganske betydelig del.

 

Gas kromatografi af simuleret komet, hvor en UV bestrålet is af vand, metanol og ammoniak viser dannelsen af en række sukkerarter, herunder den centrale sukkerenhed i RNA, ribose. (Copyright C. Meinert - CNRS).
Gas kromatografi af simuleret komet, hvor en UV bestrålet is af vand, metanol og ammoniak viser dannelsen af en række sukkerarter, herunder den centrale sukkerenhed i RNA, ribose. (Copyright C. Meinert – CNRS).

 

En kemiker af den gamle skole, hvor det ikke var unormalt at dufte og smage på frembragte stoffer, ville sikkert have fundet prøven en smule sød. Og have afkortet sit liv, da andre og f.eks. cancerfremkaldende stoffer også kan dannes vha. fotokemiske reaktioner.

Men hvad med kiraliteten?

I vores opstilling brugte vi upolariseret ultraviolet lys, og der var derfor ikke indbygget muligheden for at bryde kiralitets symmetrien. Men det er bestemt muligt at inducere en kiralitet vha. cirkulært polariseret lys. Cirkulært polariseret lys (CPL) er et ægte kiralt objekt, hvor der findes en højrehånds og en venstrehånds form, der er hinandens spejlbilleder.

polariz
Venstre og højrehånds polariseret lys. De to former for polarisation er hinandens spejlbilleder.

 

Cirkulært polariseret lys lyder måske som en lidt eksotisk form for lys, men det er det slet ikke. I moderne 3D biografer transmitterer de to brilleglas hver deres CPL form, og det er derfor muligt at lægge hovedet lidt på skrå uden at ødelægge 3D effekten i det stereoskopiske billede.

Men CPL findes også uden for vores jords beskyttende atmosfære. F.eks. i Orion stjernetågen OMC-1 hvor forekomsten af CPL tilskrives lysspredning på magnetfelts oplinede aflange støvkorn.

Vi har efterprøvet, at ultraviolet CPL kan overføre sin kiralitet til livets byggeklodser. Cirkulært polariseret spektroskopi på aminosyrer, udført ved den danske synkrotronstrålingskilde ASTRID2, muliggjorde en direkte forudsigelse af i hvor høj grad en overvægt af en håndethed kan induceres.

I et yderligt forsøg bestrålede vi en blanding af lige store dele af venstre og højrehånds formen af aminosyren alanin med CPL. Her kunne vi vise, at det var muligt at inducere en overvægt af den ene kirale form med nogle få procent, meget lig den overvægt, der blev fundet i Murchison meteoritten.

Meinert
Venstre og højrehånds polariseret ultraviolet lys danner en overvægt af hhv. venstre og højrehånds formen af en aminosyre, startende fra en ellers ligelig blanding af de to former. De to toppe i kromatogrammerne svarer til hver sin kiralitet af aminosyren. (Kilde: Meinert et. al. Angew. Chem. Int. Ed. 2014, 53, 210 – 214)

 

Hvad siger dette om liv på andre planeter?
Resultater som disse kan ikke undgå at rokke ved vores forståelse af hvad liv er, og hvordan det er opstået. Helt centrale og relativt komplekse organiske molekyler kan dannes under ellers livsfjendtlige forhold, som på en komet, vha. ultraviolet lys, og det selvsamme lys fra stjernetåger kan inducere kiralitet af en bestemt håndethed til brug for livets udvikling, f.eks. her på jorden.

Men hvis de mekanismer er så generelle, som det ser ud til, kan vi så ikke meget vel forvente, at liv andre steder i universet har samme form som her på jorden?

Her kan vi jo starte med at kikke på vores naboplanet Mars. Selv om vi nok ikke skal forvendte at finde små grønne mænd, så har den Europæiske rumfartsorganisations nye mission ExoMars i 2016 og 2018 bl.a. til formål, at ”søge efter tegn på forhenværende og nutidigt liv på Mars”.

Som David Bowie sang: Is there life on Mars? Hvis denne ret specielle, og måske lidt fantastiske, drøm virkeligt skulle lykkes, må vi nok forvente, at livet ikke er helt ulig det, vi allerede kender. Lige meget hvordan vi definerer det.

Copyright: ESA/ATG medialab
Copyright: ESA/ATG medialab

Planet nummer 9

I går offentliggjorde to astronomer fra California Institute of Technology en artikel, hvori de argumenterer for at vort Solsystem har en niende planet med en masse omkring 10 gange Jordens masse i en kraftigt aflang bane omkring 20 gange længere væk fra Solen end Neptun med en omløbstid på 10.000 – 20.000 år.

Det er en sensationel påstand som umiddelbart kalder på en vis skepsis idet påstande om yderligere planeter i Solsystemet har en broget historie, men denne gang ser det ud til at der er noget om snakken: I hvert fald præsenterer de 2 astronomer et ganske overbevisende argument.

Argumentet bygger på den observation at de 6 aller-yderste kendte objekter i Solsystemet, som alle er opdaget siden 2003, har en betydelig systematik i deres baner. De har alle kraftigt aflange baner, de er alle i omkring samme retning fra Solen når de er tættest på, deres baner er alle 6 “vippet” med omkring 30 grader i forhold til Solsystemets plan og det punkt hvor de krydser Solsystemets plan ligger i alle 6 tilfælde også i omkring  samme retning set fra Solen.

Grafikken fra Science herunder illustrerer de 6 objekters baner og den hypotetiske bane for den niende planet.

Orbits_1280_PlanetX2
Orientering af banerne for de 6 yderste objekter i Solsystemet og den foreslåede bane for den niende planet.

Banedynamik for objekter i Solsystemet bliver hurtigt ganske kompleks matematik. Så længe man kan reducere problemet til kun 2 objekter er det kendt stof og forstået siden Johannes Kepler, men i princippet trækker alle Solsystemets objekter jo i hinanden via tyngdekraften og så snart man skal tage hensyn til 3 eller flere legemer bliver problemet hurtigt komplekst og kaotisk og må behandles enten ved hjælp af tilnærmede metoder eller ved computersimuleringer.

De 2 astronomer, Brown og Batygin, demonstrerer i deres artikel både via beregninger og gennem computersimuleringer at en niende planet over lang tid vil kunne påvirke mindre legemer i det ydre Solsystem således at den dels “trækker” deres baner mere aflange, dels orienterer dem på samme vis. Endelig kan påvirkningen fra en sådan planet også forklare nogle få hidtil uforklarede objekter lidt længere inde som har baner der er vippet med næsten 90 grader i forhold til Solsystemets plan.

Nu går jagten så ind på faktisk at SE denne hypotetiske planet (hvis den findes). Det er ikke umiddelbart lige til at se selv en forholdsvist stor planet så langt ude. Solens lys reduceres med kvadratet på afstanden og efter lyset så har reflekteret fra planeten reduceres det igen med kvadratet på afstanden. Det betyder at lyset fra en planet dæmpes med afstanden i fjerde så når man går dobbelt så langt ud reduceres lyset til en sekstendedel etc. Ikke desto mindre er der en rimelig chance for at finde den i løbet af en kort årrække.

Hvis den altså findes.

 

 

 

Hvorfor grundforskning?

I disse tider, hvor grundforskningen i Danmark i nogen grad er under pres er det vigtigt at kaste mere lys over, hvad grundforskning er og hvorfor den er vigtig. Et godt sted at starte er hos den romerske digter Ovid som i første sang i ‘Forvandlinger’ skriver om det, der adskiller os mennesker fra dyrene :

Ellers går dyrene bøjet,
med blikket rettet mod jorden,
men mennesket bød han at rejse sit åsyn
og skue mod himlen og hæve sit hoved i vejret,
op imod stjernernes vrimmel.
Sådan blev det, der just var råt og uformeligt mudder,
forvandlet til noget nyt:
til menneskeskikkelsens former.

Astronomien, som er mit eget (grund)forskningsfelt, benyttes altså som billede på selve kulturen.

Megen grundforskning, langt det meste, handler om at forstå specifikke processer eller nøje afgrænsede fænomener. Faktisk er det en del af videnskabens succes, at den kan afgrænse og fokusere på et specifikt spørgsmål. Sjældne gange sker der store gennembrud, hvor vi pludselig henter ny erkendelse, der sprænger rammerne eller udvider horisonten for hele vores verdensbillede. Det er interessant at stille to spørgsmål i denne sammenhæng: 1) hvordan opstår videnskabelige gennembrud? og 2) hvorfor er de vigtige for menneskeheden som helhed og ikke kun for videnskabsmænd og kvinder? For at kunne stille de spørgsmål, der er alt afgørende for at finde frem til nye erkendelser om verdens beskaffenhed, inklusiv de store gennembrud, må man prøve at se på verden som var man lige dumpet ned fra en anden planet. Dette er virkelig svært, for vi er alle bundet af vante forestillinger – langt mere end vi tror. Det vi ser er ikke ”verden som den er”, men et billede, der er dybt farvet af det verdensbillede vi er indhyllet i og som vi bærer med os. Gennembrud sker, når vores vante forestillinger afsløres som falske og illusoriske, eller i hvert fald mangelfulde, eller hvor vi pludselig får adgang til viden om nye ukendte dele af verden – hvide pletter på verdenskortet. Det er evnen til at se verden ”ny”, uden vanens slør, som er vigtig for at videnskabelige gennembrud kan opstå.

Ud over denne i bedste forstand lidt barnlige tilgang til verden kræver videnskabelige gennembrud også slid, hårdt arbejde og intense brydekampe med at afdække fænomenernes hemmeligheder. En væsentlig kilde til videnskabens succes i den vestlige verden er udviklingen af det vi nu kalder den videnskabelige metode: at stille præcise spørgsmål, opstille hypoteser og afprøve disse med eksperimenter involverende nøje tilpassede instrumenter. I Dantes Guddommelige komedie siger Beatrice til Dante i en diskussion om refleksion af sollys fra månens overfalde (Paradiset, 2. sang): “…men indvendingen holder ikke hvis man gør et eksperiment – og den metode er kilde til al kunst og viden hos jer…” , så denne tanke om eksperimentets betydning var tænkt allerede i senmiddelalderen i starten af 1300-tallet, da Dante skrev.

Den kendte danske renæssanceastronom og adelsmand Tycho Brahe blev af den af mange højt elskede Mars-forsker Jens Martin Knudsen ofte hyldet som en af den moderne naturvidenskabs grundlæggere, fordi han var den første, der i slutningen af 1500-tallet for alvor forfinede den astronomiske observationskunst og søgte at opbygge et solidt observationelt fundament for studiet af himmellegemerne. Selv skrev Tycho i sin klagesang, da han faldt i unåde hos kongen og måtte forlade Danmark i 1597:

Næppe har nogen haft Sans for mit Arbejd hjemme i Danmark,
Skønt det kan lignes med det, Herkules øved tilforn.
Herkules si’er man har hjulpet den segnefærdige Atlas,
Hindred, at Himmelen faldt, udspændt fra Pol og til Pol.
Dig Ptolemæus, Alphons og Dig Kopernikus, har jeg
Rakt en Haand, naar I gled; selv stod jeg fast paa min Fod.
Himmelklodernes Gang I mægted ikke at forske,
Jeg har det gjort, og mit Værk tror jeg i Sandhed er stort.
Nye Støtter jeg rejste for Himlens straalende Hvælving,
Aldrig revner den mer, hindret har jeg dens Fald.
Eftertiden tror jeg vil yde mig Tak for min Gerning,
Lad saa min Samtid blot vise sig karrig og kold.

Tycho så virkelig vigtigheden af, at skabe et solidt fundament for verdensbilledet! Det gjorde kongen også, for han fik hele 1% af statsbudgettet til at bygge Uranienborg på den dengang Danske ø Hven. Der skal lyde et stort tak til både kongen og Tycho, fordi de på hver sin måde satte gang i denne stræben efter et fastere fundament for verdensbilledet. Samtidig er det trist at måtte beklage, at i hvert fald regeringen ligesom den gang kongen i nogen grad synes at være blevet karrig og kold overfor grundforskningen i Danmark.

Hvorfor er grundforskningen og grundvidenskabelig gennembrud vigtige for andre end videnskabsmænd og kvinder? De er vigtige, fordi vi alle må vide, hvad det er for en virkelighed vi er en del af, hvor vi kommer fra! Der ligger et element af frigørelse i at forstå, hvor vi er henne og hvor vi kommer fra. En dybere viden giver de eksistentielle grundspørgsmål hvem er vi, hvor kommer vi fra en dybere grund. Astronomien har i de seneste 100 år vist os, at vi befinder os på en planet, der kredser omkring en blandt mange milliarder stjerner i vores ”hjemgalakse” Mælkevejen. Stjerner er store ansamlinger af brint og hydrogen og en smule stjernestøv fra tidligere stjernegenerationer. Energien kommer fra kernefusion i stjernernes centre. Langt de fleste stjerner har planetsystemer, men under tiden helt forskellige fra solsystemet. Mælkevejen er en blandt mange milliarder galakser i et umådeligt stort univers, hvori energitætheden er domineret af endnu ukendt mørk stof og mørk energi. Tættere på os selv har Darwin vist, at vi er tæt forbundne med de andre levende væsener via en fælles udviklingshistorie. Kvantemekanikken har vist, at virkeligheden på det mikroskopiske niveau er fundamentalt anderledes end det vi er vant til på måder vi endnu ikke har fuldt forstået.

Disse eksempler på fundamentale erkendelser er ikke endegyldige svar om virkeligheden, men de er skridt på en vandring, der aldrig stopper og som bestandigt bringer os dybere ned i forståelsen af eksistensen. Den romerske filosof Seneca beskrev det sådan her i 7. bog i værket ”Naturvidenskabelige problemer”:

“The time will come when diligent research over long periods will bring to light things that now lie hidden. A single life time, even though entirely devoted to research, would not be enough for the investigation of so vast a subject. . . . And so this knowledge will be unfolded through long successive ages. There will come a time when our descendants will be amazed that we did not know things that are so plain to them. . . . Many discoveries are reserved for ages still to come, when memory of us will have been effaced. Our universe is a sorry little affair unless it has in it something for every age to investigate . . . . Nature does not reveal her mysteries once and for all.”

Dette er så sandt for os som det var for Seneca. En mere pragmatisk grund, som måske også har større vægt i det politiske system, er, at grundforskningen giver anledning til afledte tekniske fremskridt, der ofte langt overgår de tekniske forbedringer, vi udvikler med mere målrettet anvendt og strategisk forskning. Kvantemekanikken er nok et af de bedste eksempler. Uden kvantemekanik ingen computere, internet, solceller, og mange andre i dag essentielle opfindelser. Det er blevet anslået, at kvantemekanikken ligger til grund for 30% af USA’s økonomi. Alt det voksede frem af fri forskning – ingen havde omkring år 1900 nogen som helst ide om, at der lå dette potentiale i at forstå naturen af varmestråling, den fotoelektriske effekt og Balmer-linjerne fra brintgas. Jeg tror faktisk, at grundforskningen per investeret krone på længere sigt gør os rigere end den strategiske forskning.

Det er vigtigt at understrege, at hovedformålet med grundforskningen ikke er de afledte goder, men en følgen af driften efter at forstå verden. Hvis vi glemmer grundforskningens egentlige drivkraft, så bliver den til anvendt forskning. Anvendt forskning er i sig selv er en god ting, men den kan ikke erstatte grundforskningen, da dens perspektiv er mere snævert og nytteorienteret. Forskningen skal gå på begge ben og lige nu er den ved at blive halt.

Billeder fra Pluto

Sonden New Horizons passerede tæt forbi Pluto i tirsdags og i går aftes (15/7) blev de første billeder fra passagen offentliggjort. Fordi det er en forholdsvis lille rumsonde, med relativt lille parabolantenne til kommunikation, og fordi den er så langt væk, kommer data dryssende meget langsomt. Dataraten er et sted mellem 1-4 kilobit per sekund afhængigt af hvor højt Pluto er på himlen set fra den Deep Space Network station, som sonden kommunikerer med. Altså en god del langsommere end et gammeldags 56k modem. I løbet af disse  dage fylder sonden sin harddisk op og så vil det faktisk tage over et år før alle data er modtaget på Jorden.

NH-Pluto-color-NewHorizons-20150713

Men allerede det billede som ses ovenfor som er taget fra en afstand på lige under 800.000 km, før passagen, viste at Pluto ville gemme på overraskelser. Der er markante forskelle i mellem forskellige regioner fra det lyse “Hjerte” i midten nederst som man formoder er is (formentlig frossent kvælstof) og til det mørke område lige ved siden af, benævnt “Hvalen”. Det er tydeligvis en kompleks overflade dannet af samspil mellem flere forskellige processer.

Da det første højopløste billede fra passagen blev offentliggjort i går kunne man høre underkæberne ramme gulvet hos publikum i pressekonferencen. Billedet (herunder) er taget fra en afstand på omkring  77.000 km og viser et område umiddelbart nedenfor “Hjertet” (det glatte terræn øverst til venstre i dette billede er det nederste af Hjertet ).

nh-pluto-surface-scale

Billedet er bemærkelsesværdigt dels for hvad det viser – primært den gruppe af bjerge som ses centralt i billedet. De er overraskende høje, op til 3.5 km, og er ikke en del af en kraterrand, så tydeligvis ikke dannet ved et meteornedslag men ved en indre proces. Billedet er dog allermest bemærkelsesværdigt for hvad det ikke viser.

Jeg kan ikke se et eneste nedslagskrater på det billede.

Ved samme lejlighed offentliggjorde man også et billede af Plutos måne Charon (udtales Karon) taget under “indflyvningen”, dvs. der vil komme billeder i højere opløsning. Billedet (herunder) viser også en overflade med forbløffende få nedslagskratere.

nh-charon

Så både Pluto og Charon har langt færre kratere end forventet. Det betyder så som udgangspunkt enten at mængden af nedslag derude i den yderste del af Solsystemet har været mange gange lavere end længere inde gennem hele Solsystemets historie eller at overfladerne på både Pluto og Charon er meget unge og begge kloder dermed stadig er geologisk aktive. Hvad enten forklaringen er det ene eller det andet er det en KÆMPE overraskelse.

Det virker ikke umiddelbart sandsynligt at mængden af kollisioner og meteornedslag kan have været så dramatisk anderledes ude ved Pluto. Især ikke fordi både Pluto og Charon har enkelte større nedslagskratere men Pluto baseret på nærbilledet ovenfor øjensynligt har nærmest ingen mindre kratere. Det skulle være spøjst om der havde været store meteorer, men ingen små. Derimod kan man rimeligt nemt forestille sig geologiske processer, der kan udviske små kratere, men har sværere ved at helt fjerne de store.

Den mest nærliggende forklaring er at Pluto og Charon er geologisk aktive og derfor har unge overflader, som har været omdannet for nylig i geologisk forstand (inden for måske 100 millioner år). Men hvis det er sandt er det rent ud sagt forbløffende.

Den generelle regel er at store kloder (Jorden, Venus, måske tildels Mars) er geologisk aktive, mens mindre kloder måske har været det engang, men ikke er det længere. Geologisk aktivitet kræver varme i klodens indre. Den varme stammer dels fra dengang kloden blev dannet, dels kommer den fra henfald af radioaktivt materiale inde i kloden. Under alle omstændigheder køler små kloder hurtigere end større kloder fordi deres rumfang er mindre i forhold til deres overflade. Så små kloder er kølet ned hurtigt, deres indre er tidligt stoppet med at være flydende, geologisk aktivitet som vulkanisme eller pladetektonik er stoppet tidligt og deres overflade er dækket af meteorkratere fra det meste af Solsystemets historie. Se for eksempel et udsnit af Månens overflade herunder. Månen er omkring 50% større i radius end Pluto, men overfladen er dækket af kratere.

houston_moon_zoom

Der findes undtagelser fra den generelle regel. En række af kæmpeplaneternes måner udviser tegn på geologisk aktivitet og et flydende indre. I de fleste tilfælde er der her tale om vand i månernes indre, men pointen er den samme: for at smelte vandet kræver det en varmekilde ude i det iskolde ydre Solsystem. Det forklares med opvarmning via tidevandskræfterne – opvarmning som skyldes friktion når disse måner bevæger sig rundt i det kraftige tyngdefelt fra deres kæmpeplanet og også påvirkes af andre måner.

Det er endog meget svært at forestille sig dén proces spille en rolle for Pluto og Charon. De to kloder er låst i deres indbyrdes kredsløb. De vender begge altid samme side mod deres partner og der er ingen tidevandskræfter aktive mellem dem. Plutos øvrige måner er uhyre små og påvirkningen fra dem må være helt ubetydelig.

Hvordan man end vender og drejer det så er de manglende kratere på Plutos overflade en genuin overraskelse og der er tydeligvis noget, vi ikke forstår. Er Pluto og Charon meget varmere end forventet ? Har de f.eks. flydende vand i deres indre trods de omkring -230 C på overfladen ? Er de domineret af andet end vand, noget med langt lavere smeltepunkt ? Har de en kompleks historie, således at de kan have været udsat for kraftige tidevandskræfter for nylig (passage tæt på et andet legeme ?)

Vi ved det simpelthen ikke lige nu og kan kun vente i spænding mens billede efter billede langsomt drysser ned gennem 2k-forbindelsen derude fra Solsystemets yderste kant..